Prentice Hall Science Explorer Motion Forces And Energy Answers

- 10.23

Adapted Tests Prentice Hall Science Explorer Motion Forces and ...
photo src: www.amazon.com

Force-directed graph drawing algorithms are a class of algorithms for drawing graphs in an aesthetically pleasing way. Their purpose is to position the nodes of a graph in two-dimensional or three-dimensional space so that all the edges are of more or less equal length and there are as few crossing edges as possible, by assigning forces among the set of edges and the set of nodes, based on their relative positions, and then using these forces either to simulate the motion of the edges and nodes or to minimize their energy.

While graph drawing can be a difficult problem, force-directed algorithms, being physical simulations, usually require no special knowledge about graph theory such as planarity.


Buy Teachers Edition Motion, Forces, and Energy Guided Reading and ...
photo src: guide.alibaba.com


Maps, Directions, and Place Reviews



Forces

Force-directed graph drawing algorithms assign forces among the set of edges and the set of nodes of a graph drawing. Typically, spring-like attractive forces based on Hooke's law are used to attract pairs of endpoints of the graph's edges towards each other, while simultaneously repulsive forces like those of electrically charged particles based on Coulomb's law are used to separate all pairs of nodes. In equilibrium states for this system of forces, the edges tend to have uniform length (because of the spring forces), and nodes that are not connected by an edge tend to be drawn further apart (because of the electrical repulsion). Edge attraction and vertex repulsion forces may be defined using functions that are not based on the physical behavior of springs and particles; for instance, some force-directed systems use springs whose attractive force is logarithmic rather than linear.

An alternative model considers a spring-like force for every pair of nodes ( i , j ) {\displaystyle (i,j)} where the ideal length ? i j {\displaystyle \delta _{ij}} of each spring is proportional to the graph-theoretic distance between nodes i and j, without using a separate repulsive force. Minimizing the difference (usually the squared difference) between Euclidean and ideal distances between nodes is then equivalent to a metric multidimensional scaling problem.

A force-directed graph can involve forces other than mechanical springs and electrical repulsion. A force analogous to gravity may be used to pull vertices towards a fixed point of the drawing space; this may be used to pull together different connected components of a disconnected graph, which would otherwise tend to fly apart from each other because of the repulsive forces, and to draw nodes with greater centrality to more central positions in the drawing; it may also affect the vertex spacing within a single component. Analogues of magnetic fields may be used for directed graphs. Repulsive forces may be placed on edges as well as on nodes in order to avoid overlap or near-overlap in the final drawing. In drawings with curved edges such as circular arcs or spline curves, forces may also be placed on the control points of these curves, for instance to improve their angular resolution.


Adapted Tests Prentice Hall Science Explorer Motion Forces and ...
photo src: www.amazon.com


Methods

Once the forces on the nodes and edges of a graph have been defined, the behavior of the entire graph under these sources may then be simulated as if it were a physical system. In such a simulation, the forces are applied to the nodes, pulling them closer together or pushing them further apart. This is repeated iteratively until the system comes to a mechanical equilibrium state; i.e., their relative positions do not change anymore from one iteration to the next. The positions of the nodes in this equilibrium are used to generate a drawing of the graph.

For forces defined from springs whose ideal length is proportional to the graph-theoretic distance, stress majorization gives a very well-behaved (i.e., monotonically convergent) and mathematically elegant way to minimise these differences and, hence, find a good layout for the graph.

It is also possible to employ mechanisms that search more directly for energy minima, either instead of or in conjunction with physical simulation. Such mechanisms, which are examples of general global optimization methods, include simulated annealing and genetic algorithms.




Advantages

The following are among the most important advantages of force-directed algorithms:




Disadvantages

The main disadvantages of force-directed algorithms include the following:




History

Force-directed methods in graph drawing date back to the work of Tutte (1963), who showed that polyhedral graphs may be drawn in the plane with all faces convex by fixing the vertices of the outer face of a planar embedding of the graph into convex position, placing a spring-like attractive force on each edge, and letting the system settle into an equilibrium. Because of the simple nature of the forces in this case, the system cannot get stuck in local minima, but rather converges to a unique global optimum configuration. Because of this work, embeddings of planar graphs with convex faces are sometimes called Tutte embeddings.

The combination of attractive forces on adjacent vertices, and repulsive forces on all vertices, was first used by Eades (1984); additional pioneering work on this type of force-directed layout was done by Fruchterman & Reingold (1991). The idea of using only spring forces between all pairs of vertices, with ideal spring lengths equal to the vertices' graph-theoretic distance, is from Kamada & Kawai (1989).

Source of the article : Wikipedia



EmoticonEmoticon

 

Start typing and press Enter to search